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Abstract

We present a fast algorithm for slope detection on gray scale images, based on 2D Fourier transform and standard filters; this may be
used for line or edge detection. Our approach is based on the calculation of “energy” per direction of the image, thus obtaining the “energy
spectrum on slope” (�). This exhibits local maxima at the points where � equals the slopes of linear or quasi-linear segments within the
image, yet it is not affected by their position within it. The process thus outlined has certain advantages as regards its efficiency of linear
structure detection, compared to the Radon and Hough transforms. It was motivated by the study of astrophysical images (solar dynamic
radio spectra) which necessitated the introduction of a method for fast extraction of “drifting structures”, since they appear as linear or
quasi-linear segments on these spectra.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of the detection of linear or quasi-linear seg-
ments on gray scale images has incited a number of differ-
ent methods aiming, mostly, at the calculation of slope and
position of each and every linear structure in a given image
(cf. for example Ref. [1]). The corresponding algorithms,
such as Hough transform [2,3], Radon transform [4] and
combinations thereof [5,6] are powerful tools yet of high
computational complexity. More often than not their results
are very good when a few linear segments are embedded
within a relatively low noise background, yet their efficiency
decreases when the number of the linear structures or the
noise level increase; their performance is, also, adversely
affected when the slopes of the linear segments are concen-
trated within a narrow range of values.
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In this report we propose an algorithm based on fast
Fourier transform (FFT); it draws upon the well established
FFT advantages [7,8] as regards computational efficiency.
The basic idea is the calculation of energy density as a func-
tion of angle; the peaks of energy per direction on the im-
age indicate, in a statistical sense, the “dominant” slopes of
linear or quasi-linear segments within the image.

The proposed method was motivated by the analysis of
solar radio bursts observed by receivers with a broad band
frequency range, and recorded simultaneously on a number
of separate frequency channels. Their “dynamic spectra”
are images depicting the variations in the bursts radiation
intensity, represented by pixel brightness, in terms of time
and logarithm of frequency which form, respectively, the
x- and y-axis of the image. The frequency is characteristic of
a certain layer of the solar atmosphere and proportional to
the square root of the electron number density at that level;
thus the logarithm of the frequency is proportional to the
layer’s height. This is due to the almost barometric (expo-
nential) scaling of the coronal density near the solar surface.
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The solar radio bursts are broadly classified according to
the form of their dynamic spectrum to “drift bursts” and
“continua”; the former being narrow band structures drift-
ing in frequency with time, the latter broadband forms cov-
ering most of the spectral range simultaneously. The con-
tinua family of bursts often exhibits “fine structure”, which
may become accentuated once the continuum background is
suppressed (cf. for example [9,10]). Certain classes of fine
structure features appear in form of groups of drifting ele-
ments. The importance of the detection of linear segments
on dynamic spectra is twofold: Firstly, a number of drift
bursts trace the path of an exciter ascending at an almost
constant velocity within the solar atmosphere, thus forming
linear segments on the dynamic spectra, secondly the ter-
restrial interference appears mostly in the form of constant
frequency lines, i.e. parallel to the x-axis, which must be
detected and duly eliminated.

In Section 2 the proposed method is outlined and par-
ticularly the basic theory is exposed (Section 2.1), the new
method is described and compared to Radon and Hough
methods (Section 2.2), the resolution of new method is de-
rived (Section 2.3), the effect of noise (Gaussian, salt & pep-
per, missing pieces) is studied in Section 2.4 and restoration
of linear structures out of a noisy environment is presented
in Section 2.5. Finally, discussion and conclusions are pre-
sented in Section 3. The derivation of certain intermediate
results is included, for clarity of presentation, in Appendix
A and calculation of noise is done in Appendix B.

2. Outline of the method

2.1. The 2D Fourier transform of a linear segment

A linear segment of width D and length L, parallel to the
x-axis, may by written as

f0(x, y) = �
( x

L

)
�
( y

D

)
,

�(z) =
{

1, |z|� 1
2 ,

0, |z| > 1
2

(1)

the 2D Fourier transform is, approximately, another linear
structure parallel to the y-axis (cf. Eq. (2)):

Fo(�1, �2) = L · D sinc(L�1) sinc(D�2), (2)

where

sinc(x) = sin(�x)

�x
for x �= 0,

sinc(0) = 1. (3)

In case the linear segment undergoes a rotation by � the
corresponding Fourier transform will also undergo a rotation

by � in the (�1, �2) domain (cf. Fig. 1):

f (x, y) = f0(x cos(�) + y sin(�), −x sin(�) + y cos(�)),

F(�1, �2) = F0(�1 cos(�) + �2 sin(�),

− �1 sin(�) + �2 cos(�)), (4)

where f, f0 are two functions representing linear structures
rotated by angle � and F, F0 the corresponding Fourier
transforms. From Eqs. (2) and (4) we have

F(�1, �2) = sin(L(�1 cos(�) + �2 sin(�)))

�(�1 cos(�) + �2 sin(�))

× sin(D(−�1 sin(�) + �2 cos(�)))

�(−�1 sin(�) + �2 cos(�))
, (5)

which is the general form of the 2D Fourier Transform of a
line segment.

2.2. The angular energy density

From Eqs. (2)–(5) and the Parseval’s Theorem we have∫ ∫
|f (x, y)|2 dx dy =

∫ ∞

−∞

∫ ∞

−∞
|F(�1, �2)|2 d�1 d�2

= 2
∫ �

0
d�
∫ ∞

0
|F(�, �)|2� d�,

�1 = � cos(�), �2 = � sin(�), (6)

where, in the last term of Eq. (6) we have changed from
cartesian (�1, �2) into polar (�, �) coordinates in Fourier
space. We may define the “angular energy density” (S(�))
as follows:

S(�) = 2
∫ ∞

0
|F(�, �)|2� d� = dE

d�

= 2
∫ ∞

0
|F0(�1 cos(�) + �2 sin(�), −�1 sin(�)

+ �2 cos(�))|2� d�

− �/2����/2, � = � − �. (7)

The angular energy density represents the amount of en-
ergy (E) in the (�, � + d�) range and reaches a maximum
for � = � + �/2 (cf. Appendix A). This characteristic is ex-
ploited in the proposed process of slope detection.

Upon discretization the variables (x, y) are replaced
by (m, n), (�1, �2) by (k, l) and (�, �) by (�, u). We have
[11,12]

Fk,l =
M−1∑
m=0

N−1∑
n=0

fm,n(e
−i(2�/M))mk(e−i(2�/N))nl ,

Ek,l = 1

M · N
|Fk,l |2 ⇔

M∑
k=1

N∑
l=1

Ek,l = E, (8)
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Fig. 1. Fourier transforms of linear structures: (panels a and d): a straight line, f (x, y), and the corresponding 2D Fourier transform, F(�1, �2). The
same for an horizontal line segment (panels b and e) and for an arbitrary line segment (panels c and f). In all cases the 2D transform maps each segment
to a line segment in Fourier space at right angle to the original.

where we have assumed that the original function and the
corresponding 2D Fourier transform were sampled on a M×
N grid. Fk,l stands for the 2D discrete Fourier transform of
f (x, y) and Ek,l for the energy on pixel (k, l), in Fourier
space. In discrete polar coordinates, Eq. (8) assumes the
form

E =
∑
u

Su =
∑
u

2

�N2
B

NB∑
�=1

� · Eu,�, (9)

where we have taken NB = (N/2) − 1, under the assump-
tions M = N and NB?1 which do not result in any loss
of generality, and Su stands for the energy along the (dis-
crete) direction u. We note that for the Fourier transform in
polar form the sampling is not uniform as it is the case for
the original function and its transform in cartesian coordi-
nates (cf. Fig. 2), therefore the multiplier � is used in the
summation. Eq. (9) constitutes the definition of the angular
energy density in discrete form, which is used henceforward
throughout the text.

For comparison reasons we may define two function
called “angular distribution functions” corresponding to
Radon transform (SR) and Hough transform (RH ). Radon
Transform is given by the relation

FR(�, �) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)�(x cos �

+ y sin � − �)dx dy. (10)

The selection of a threshold is necessary for the function
FR(�, �) in order to enhance the line detection and eliminate

Fourier space sampled

← u
←u+∆u

k (N samples)

l

Fig. 2. Position of sampling marks in cartesian (points) and polar coor-
dinates (square markers). The non-uniform sampling is obvious.

cluttering the 2D image. We have, hence

�

FR(�, �) =
{

FR(�, �) if FR(�, �) > T ,

0 if FR(�, �) > T ,
(11)

where T is a threshold, and the angular distribution function
(SR) is

SR(�) =
∫ ∞

−∞
�

FR(�, �) d�. (12)
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Fig. 3. Detection of a line segment within an image. Image of Fig. 1c is used. (a) Half Fourier space periodogram expressed in polar coordinates (�, �).
(b) Angular energy density (Integration of graph (a) on �).
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Fig. 4. Same as Fig. 3, but with three linear segments in the image.

The angular distribution function (SH ) is similarly obtained.
These are used in the following paragraph to demonstrate
the relative efficiency of the proposed algorithm compared
to these two methods.

Examples of the computation of the angular energy den-
sity (S(�) of linear segments on image are presented in

Figs. 3 and 4. Results are compared with the angular distri-
bution functions (SH ) and (SR) on surrogate data compris-
ing a number of images:

• An image with seven linear segments of various lengths
(Fig. 5)
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Fig. 5. Leftmost panel: a prototype image comprising a number of linear segments; it is used for comparison of the efficiency of the 2D-FFT method,
proposed in this report, with the Hough and Radon transforms. Remaining three panels: angular spectra derived using our method (second panel from
the Left), Radon transform (third panel) and Hough transform (rightmost panel), respectively.

• A selection of four prototype images subject to high pass
filtering, for background suppression, (Fig. 6) end to Sobel
edge enhancements (Fig. 7). These are
• the “pentagon” image,
• the “house” image,
• the “D15” and “D52” Brodaz texture images.

All these images are characterized by a great number of lin-
ear segments which render them appropriate for the algo-
rithm efficiency test.

We calculate angular energy densities, S(�), SH (�),
SR(�), using our method, Hough and Radon transforms,
respectively. The necessity of adopting a threshold in the
computation of SH (�), SR(�), in order to remove clutter
from the diagrams, renders these two functions quite sen-
sitive to the threshold level; it furthermore introduces a
threshold dependent selection effect which manifests itself
either by the appearance of spurious peaks or by the sup-
pression of significant ones. In Figs. 6 and 7 the optimum
threshold for each of SH (�), SR(�) has been selected by
trial and error that we may have the best possible peak
detection with the minimum clutter. In Fig. 6 we note that
SH (�) fails to detect linear segments from high pass filtered
images.

2.3. Resolution of the linear segment detection

Each line segment in an image is represented by a peak on
the angular energy density plot of S(�). The angle, ��, cor-
responding to the half peak value, in fact the “peak width”,
defines the resolution of the proposed method for the said
segment; two similar peaks at a “distance” less than �� are
indistinguishable from each other. From the results of a large
number of computations on prototype images with a single
line segment (such as in Fig. 1), and varying length (L) and
width (D) we may plot the resolution limit (��) versus D/L

(Fig. 8) which was found to follow the empirical relation-
ship:

�� = 65.6(D/L), (13)

where �� is in degrees. Eq. (13) indicates that the resolution
limit is proportional to the D/L ratio, hence a decrease in
this ratio leads to an increase of the resolution. This, in
turn, implies that we may improve the detection efficiency
of the proposed method by means of high pass or edge
detection filters; these may deform the original image, but
they conserve slopes of linear segments and, furthermore,
enhance the D/L ratio.

2.4. Background noise

The efficiency of our algorithm in the presence of ad-
ditive white Gaussian, salt & pepper and missing pieces
noise is examined and compared to Radon and Hough al-
gorithms. For this comparison we use the prototype image
of seven linear segments (Fig. 5) with added noise. The re-
sults are analyzed in the following subparagraphs (cf. also
Figs. 9–11).

2.4.1. White Gaussian noise
The presence of additive white Gaussian noise (AWGN)

in the image increases the mean and variance of background
level of the angular energy density. In particular, additive
white noise with zero mean and variance equal to 	2, may
raise the “mean square error” (henceforward MSE) of a
noiseless image with maximum equal to unity, to MSE=	2.
Then, for the angular energy density (Su) corresponding to
angle u (Appendix B)

var[Su] = 2	4

3�2

(NB + 1)(2NB + 1)

N3
B

≈ 4	4

3NB�2 , NB?1. (14)

This result suggests the use of a reasonable threshold (such
as 5	) in order to discriminate the spectral peaks represent-
ing line segments, from the noise spectrum. Hence we have
Su �10	2/�

√
3NB . For a more detailed presentation of this

calculation cf. Appendix B.
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Fig. 6. Top panel (left to right): the images pentagon, house, D15 and D52 Brodatz texture images. Second panel from top: same images as in top panel,
submitted to an isotropic high pass filtering. Third panel: angular spectra of the filtered images derived using our method. Fourth panel: same spectra
derived using Radon transform. Bottom panel: same spectra derived using Hough transform. The latter does not respond to the images.
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Fig. 7. Top two panels: same images as in Fig. 6, but filtered with a Sobel edge detection algorithm. Next three panels: angular spectra as in Fig. 6.
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Fig. 8. Resolution of the slope detection method is determined by the
ridge width of each segment, which is proportional to the ratio of width
over length (D/L).

An example of the angular energy density of a “noisy”
image for different signal to noise ratios (10, 5 and 0 dB) is
exhibited in Fig. 9. The angular distribution function SH (�)

is not responding to the original image but it may be en-
hanced by means of Sobel edge detection filtering. The same
filter has been deemed necessary and has been applied in
the computation of the Radon angular distribution func-
tion SR(�). As regards detection efficiency, when the noise
level is low all three algorithms appear adequate to the task
of edge detection. With increased back ground noise level
though, spurious peaks appear in SH (�); further increase
of the noise eliminates the shortest peaks of S(�), SH (�),
SR(�).

2.4.2. Salt & pepper noise
The angular energy density S(�) and angular distribu-

tion functions SH (�) and SR(�), of the prototype image
(Fig. 5) with added 5%, 15% and 50% salt & pepper noise are
shown in Fig. 10. The angular distribution function SH (�)

responds reasonably well to low and medium noise levels,
but it exhibits spurious peaks at higher noise (50%). The
Radon angular density, SR(�), responds well to the salt &
pepper noise, yet the accuracy of the peaks deteriorates at
high noise level. The angular energy density, S(�), responds
relatively well to all noise levels, missing only the shortest
peaks (corresponding to the shortest linear segments) as the
noise level increases.

2.4.3. Noise of missing pieces
We have, lastly, made a comparative test of the robustness

of each of the three algorithms in the case of the missing
pieces noise (cf. Fig. 11,) at low (5%), medium (15%) and
high (50%) level. In the case of high noise level, the angular
distribution functions SH (�) and SR(�) tend to miss certain
peaks; this is not the case for the 2D Fourier based algorithm
proposed in this report (S(�)).

2.5. Image directional filtering

We have, in the previous subsections, presented the line
segment detection method including examples on surrogate
data. In this section we formulate and apply the algorithm
on actual images. These are solar dynamic spectra1 hence
the standard image coordinates x, y are replaced by time, t,
and frequency, f (or logarithm of frequency, ln(f )), in this
case (Fig. 12 ).

More often than not some part of the image background
needs be suppressed in order to enhance the linear structures
before their detection, hence an initial stage of high pass fil-
tering is, usually, included. As regards the dynamic spectra
of solar radio bursts in particular, the detection of fine struc-
ture is customarily obtained by differentiation on time; this
however, may introduce loss of information or distortion of
the original signal. The use of directional filters to suppress
interference at specific angles, such as � = 0 corresponding
to fixed frequency terrestrial signals seems promising. Gaus-
sian smoothing filters seem also appropriate to this task as
they may also suppress slowly varying background compo-
nents.

The algorithm for this directional filtering is briefly out-
lined as follows:

(1) An 1D Gaussian smoothing filter with a selected cut-off
frequency fs is designed; then the complementary high
pass filter is calculated.

(2) The high pass filter is rotated to a specific angle, in
order to suppress signals at this angle.

(3) In order to suppress aliasing we take the following steps:
(a) points with a distance from the specified directional

axis, smaller than 0.5/fs are taken to lie on this
axis;

(b) points with a distance from the specified directional
axis, greater than 0.5/fs but smaller than 1/fs take
a value inversely proportional to the corresponding
value on the axis;

(c) all other points are set to zero.
(4) Lastly, we calculate the angular energy density of the

filtered image. In case we detect a specific peak which
we desire to suppress further we repeat the directional
filtering process.

Fig. 12 is a solar radio burst dynamic spectrum, where
we have successively applied high pass filters along the time
and frequency axis and then our 2D Fourier based slope
detection method.

1 A dynamic spectrum is a method of representation of recordings by
multichannel receivers. The x-coordinate is time, t , on the y-coordinate
is the frequency of each receiving channel. The signal intensity from a
channel of frequency fn at time tm, is represented by pixel brightness
at (tm, fn); In Fig. 12 we have adopted a gray scale colour table, where
white pixels correspond to the background, set to zero, and black pixels
to maximum intensity.
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Fig. 9. Response of angular spectra to Gaussian noise. Top panel: the prototype image (cf. Fig. 5) with added Gaussian noise with PSNR 10, 5 and 0 db,
respectively from left to right. Second panel: angular spectra of the noisy prototype image derived using our method. Third panel: angular distribution
functions derived using Radon transform. Bottom panel: angular distribution functions derived using Hough transform.
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3. Discussion and conclusions

In this report we present a fast algorithm for the detection
of linear and quasi-linear structures in gray-scale images.
Unlike previous attempts, this algorithm introduces the an-
gular energy density and detects angular distribution of these
structures in images; this statistical approach proves to be
very useful in case of a great number of line segments. As is
based on fast Fourier transform (FFT) methods, the computa-
tional efficiency and, in turn, the rate of estimation are high.

The noise immunity of the method is satisfactory since
PSNR along a given direction angle is greater than a rea-
sonably low threshold.

As regards the detection of solar radio burst fine structure
the method proposed appears quite sensitive in slope de-
tection. As already mentioned in Section 1 there is a direct
correspondence between frequency and height in the solar
atmosphere (Corona) hence the slopes of bursts on the time-
frequency plane can be, almost immediately, indicate the

corresponding velocities of their exciters. This suggests this
method as a promising tool in the study of solar radio bursts.
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Appendix A. The angular energy density function S(�)

of a line segment

In this appendix we outline the derivation of the angular
energy density function S(�) of a line segment. The process
is tedious but straight forward. From Eqs. (6) and (7) in
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Section 2.2 we have

S(�) = 2

(
L · D

a · b

)2 ∫ ∞

0
� d� sinc2(a�) sinc2(b�)

= 2

(
L · D

�2a · b

)2 ∫ ∞

0
(d�/�3) sin2(�a�) sin2(�b�)

= 2

(
L · D

a · b

)2

h(�, a, b), (A.1)

where

a = L cos(� − �), b = D sin(� − �). (A.2)

We expand the numerator using standard trigonometric iden-
tities

sin2(�a�) sin2(�b�) = (1 − cos(2�b�) − cos(2�a�))/4

+ (cos(2�(a − b)�)

− cos(2�(a + b)�))/8. (A.3)

From (A.1), (A.2) and (A.3) we have

h(�) = �2(b2Ci(2b�) + a2Ci(2a�))/2

− �2(a + b)2Ci(2(a + b)�)/4

− �2(a − b)2Ci(2(a − b)�)/4

− �(a sin(2a�) + b sin(2b�))/4�

+ �((a + b) sin(2(a + b)�)

+ (a − b) sin(2(a − b)�))/8�

+ (2 cos(2a�) − cos(2(a + b)�)

− cos(2(a − b)�) + 2 cos(2b�) − 2)/16�2, (A.4)

where Ci(x) is the cosine integral and is defined by the
relation Ci(x) = 
E + ln(x) + ∫ x

0 (cos t − 1)dt/t and 
E is
Euler’s constant (=0.577215664 . . .). We now let A and B,
be the limits of h(�) at zero and infinity, respectively. We
thus have

(a · b)2

(L · D)2 S(�) = B − A = lim
�→∞

h(�) − lim
�→0+

h(�), (A.5)

where

A = −
(
�2/4

) (
b2 ln(a + b) + a2 ln(a + b)

+b2 ln(a − b) + a2 ln(a − b)
)

−
(
�2/4

) (
−2b2 ln(b) − 2a2 ln(a)

+2ab ln(a + b) − 2ab ln(a − b)
)

=
(
�2/4

) (
2a2 ln(a) + 2b2 ln(b)

−(a + b) ln(a + b) − (a − b) ln(a − b)
)

(A.6)
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Fig. A.1. The function S(�) (in logarithmic scale) versus � = � − �, for
L = 100 and D = 1/100.

and

B = �3/8(2a2 signum(a) + 2b2 signum(b))

+ �3/8(−a2 signum(a + b) − b2 signum(a + b)

− 2ab signum(a + b))

+ �3/8(−a2 signum(a − b) − b2 signum(a − b)

+ 2ab signum(a − b))

= �3/8(2a2 signum(a) + 2b2 signum(b))

+ �3/8(−(a + b)2 signum(a + b)

− (a − b)2 signum(a − b)). (A.7)

In Eq. (A.1) we note that h(�, a, b) is an even and sym-
metric function of a and b, so we may set a > 0 and b > 0
without loss of generality. Thus, we may have a=|a|, b=|b|
and a + b = |a + b|. From the symmetry we set a > b with-
out loss of generality, hence a − b = |a − b|. Substituting
the simplified h(�, a, b) into (A.6) and (A.7) we have real
A and B = 0. Therefore, from Eq. (A.5)

S(�) =
(
L2D2/2�2a2b2

) (
−2a2 ln |a| − 2b2 ln |b|

+(a + b)2 ln |a + b| + (a − b)2 ln |a − b|
)

(A.8)

from Eq. (A.2) setting �=�−�, S(�) assumes the simplified
form

S(�)=
(
1/2�2cos2(�)sin2(�)

)(
−2L2cos2(�) ln |L cos(�)|

− 2D2sin2(�) ln |D sin(�)| + (L cos(�)

+ D sin(�))2 ln |L cos(�) + D sin(�)|
+ (L cos(�) − D sin(�))2 ln |L cos(�)

−D sin(�)|
)

. (A.9)

Graphical representation of Eq. (A.9) is shown in Fig. A.1
where a pronounced maximum at � = �/2 is formed.



576 P. Tsitsipis et al. / Pattern Recognition 40 (2007) 563–577

Appendix B. Detection of linear structure in the presence
of Gaussian noise

We calculate the variance of the periodogram in case of
additive white Gaussian noise. Following [11] we have

〈Ev,u〉 = 	2,

var[Ev,u] = 	4. (B.1)

From Eq. (9) in Section 2.2 we have

〈Su〉 =
(

2/�N2
B

) NB∑
�=1

〈� · Eu,�〉 =
(

2/�N2
B

) NB∑
�=1

〈�〉〈Eu,�〉

=
(

2/�N2
B

) NB∑
�=1

	2 · � =
(

2	2/�N2
B

) NB∑
v=1

�

=
(

2	2/�N2
B

)
NB(NB + 1)/2

� 	2/� (B.2)

hence

〈S2
u〉 =

(
4/�2N4

B

) 〈( NB∑
�=1

�E�,u

)2〉

=
(

4/�2N4
B

)⎛⎝ NB∑
�=1

�2〈E2
�,u〉

+2
NB−1∑
�1=1

NB∑
�2=�1+1

�1 · �2〈E�1,u〉〈E�2,u〉
⎞
⎠

=
(

4/�2N4
B

)⎛⎝ NB∑
v=1

�2〈E2
�,u〉

+2
NB−1∑
�1=1

NB∑
�2=�1+1

�1 · �2〈Su〉2

⎞
⎠

=
(

4/�2N4
B

)⎛⎝ NB∑
�=1

�2(var[E�,u] + 〈Su〉2)

+2
NB−1∑
�1=1

NB∑
�2=�1+1

�1 · �2〈Su〉2

⎞
⎠

=
(

4/�2N4
B

)⎛⎝ NB∑
v=1

�2var[E�,u] +
NB∑
v=1

�2〈Su〉2

+2
NB−1∑
�1=1

NB∑
�2=�1+1

�1 · �2〈Su〉2

⎞
⎠

=
(

4/�2N4
B

)⎛⎝ NB∑
�=1

�2var[E�,u] + 〈Su〉2

×
⎛
⎝ NB∑

�=1

�2 + 2
NB−1∑
v1=1

NB∑
v2=v1+1

�1 · �2

⎞
⎠
⎞
⎠

=
(

4/�2N4
B

)⎛⎝ NB∑
�=1

�2var[E�,u] + 〈Su〉2

(
NB∑
�=1

�

)2⎞⎠
(B.3)

and

〈Su〉2 =
〈(

2/�N2
B

) NB∑
v=1

�E�,u

〉

=
(

2/�N2
B

)( NB∑
�=1

�〈E�,u〉
)2

=
(

2/�N2
B

)
〈E�,u〉2

(
NB∑
�=1

�

)2

. (B.4)

From Eqs. (B.3) and (B.4) the variance of Su for NB?1 is
calculated:

var[Su] = 〈Su〉2 − 〈S2
u〉

=
[
4/�2N4

B

]⎛⎝ NB∑
�=1

�2var[E�,u]+〈E�,u〉2

(
NB∑
�=1

�

)2⎞⎠

−
[
4/�2N4

B

]
〈E�,u〉2

(
NB∑
�=1

�

)2

=
[
4/�2N4

B

] NB∑
�=1

�2 var [E�,u]

=
[
4/�2N4

B

] NB∑
�=1

�2	4 = [4	4/�2N4
B ]

NB∑
�=1

�2

=
[
4	4/�2N4

B

]
(NB(NB + 1)(2NB + 1)/6)

�
(

4	4/�2N4
B

)
· (N3

B/3)

= 4	4/3�2NB . (B.5)
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